If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 6k2 + 12k + -15 = -10 Reorder the terms: -15 + 12k + 6k2 = -10 Solving -15 + 12k + 6k2 = -10 Solving for variable 'k'. Reorder the terms: -15 + 10 + 12k + 6k2 = -10 + 10 Combine like terms: -15 + 10 = -5 -5 + 12k + 6k2 = -10 + 10 Combine like terms: -10 + 10 = 0 -5 + 12k + 6k2 = 0 Begin completing the square. Divide all terms by 6 the coefficient of the squared term: Divide each side by '6'. -0.8333333333 + 2k + k2 = 0 Move the constant term to the right: Add '0.8333333333' to each side of the equation. -0.8333333333 + 2k + 0.8333333333 + k2 = 0 + 0.8333333333 Reorder the terms: -0.8333333333 + 0.8333333333 + 2k + k2 = 0 + 0.8333333333 Combine like terms: -0.8333333333 + 0.8333333333 = 0.0000000000 0.0000000000 + 2k + k2 = 0 + 0.8333333333 2k + k2 = 0 + 0.8333333333 Combine like terms: 0 + 0.8333333333 = 0.8333333333 2k + k2 = 0.8333333333 The k term is 2k. Take half its coefficient (1). Square it (1) and add it to both sides. Add '1' to each side of the equation. 2k + 1 + k2 = 0.8333333333 + 1 Reorder the terms: 1 + 2k + k2 = 0.8333333333 + 1 Combine like terms: 0.8333333333 + 1 = 1.8333333333 1 + 2k + k2 = 1.8333333333 Factor a perfect square on the left side: (k + 1)(k + 1) = 1.8333333333 Calculate the square root of the right side: 1.354006401 Break this problem into two subproblems by setting (k + 1) equal to 1.354006401 and -1.354006401.Subproblem 1
k + 1 = 1.354006401 Simplifying k + 1 = 1.354006401 Reorder the terms: 1 + k = 1.354006401 Solving 1 + k = 1.354006401 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + k = 1.354006401 + -1 Combine like terms: 1 + -1 = 0 0 + k = 1.354006401 + -1 k = 1.354006401 + -1 Combine like terms: 1.354006401 + -1 = 0.354006401 k = 0.354006401 Simplifying k = 0.354006401Subproblem 2
k + 1 = -1.354006401 Simplifying k + 1 = -1.354006401 Reorder the terms: 1 + k = -1.354006401 Solving 1 + k = -1.354006401 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + k = -1.354006401 + -1 Combine like terms: 1 + -1 = 0 0 + k = -1.354006401 + -1 k = -1.354006401 + -1 Combine like terms: -1.354006401 + -1 = -2.354006401 k = -2.354006401 Simplifying k = -2.354006401Solution
The solution to the problem is based on the solutions from the subproblems. k = {0.354006401, -2.354006401}
| 2/3*9/10*4 | | 0.5y+0.6y-6=-15 | | 6x+24=2(3x+15) | | B=11/3=-2 | | 3z-2/3=6 | | 307.7514=3.14r^2 | | 31-a=-12 | | b+79=106 | | 3a-5b=16 | | 3x-21=138+3x | | 4x+5=6x-4 | | 2y-9/5 | | 4x+15y-8=33 | | 0.54f=-9 | | 3x+12=5x+100 | | 4r-2r-8=-5 | | e^4x=5e^2x+12 | | 8/4-3x | | 10x=15/4 | | 8x-1(8x-4)=4 | | -8x+8(-3x-22)=16 | | -20-a=-9 | | 8x+12-4x=-36 | | 5x+6y+8=5 | | -162=3(2-7n) | | 6f=1/9 | | -7x+9=19 | | 0.09xX=89.94 | | -24+4(2x+5)=61 | | 3n+2=2(n-3) | | 9x-6(x+2)6=12 | | x/5-=-6 |